skip to main content


Search for: All records

Creators/Authors contains: "Xu, Artemis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An optical, elastomeric matrix encodes spatiotemporal haptic stimuli, such as temperature, deformation, and damage, into light. 
    more » « less
  2. Abstract

    Conventional strain gauges are not designed for accurate measurement over the large range of deformations possible in compliant textiles. The thin, lightweight, and flexible nature of textiles also makes it challenging to attach strain gauges in a way that does not affect the mechanical properties. In this manuscript, soft, highly extensible fibers that propagate light (i.e., stretchable lightguides) are stitched as a strain gauge to map the deformation of a nylon parachute textile under tension. When under load, these fiber optic strain gauges propagate less light, and this strain‐induced light modulation is used to accurately (absolute error≈2.93%; Std. Dev.: 3.02%) measure strain in the <30% range before these textiles fail. This system has directionality; strain in parallel to the sensor results in little light attenuation while perpendicular loading shows high sensitivity (Gauge factor≈24.8 and Gauge factor||≈0.05 at the first 1% strain). Structural and optical simulations are coupled to demonstrate that load transfer on the fiber optic by the stitchwork is the dominating cause of signal modulation. To further validate the hypotheses, digital image correlation was used under dynamic loading conditions to show that these sensors do not significantly affect the mechanical properties.

     
    more » « less
  3. Abstract

    An acoustic liquefaction approach to enhance the flow of yield stress fluids during Digital Light Processing (DLP)‐based 3D printing is reported. This enhanced flow enables processing of ultrahigh‐viscosity resins (μapp > 3700 Pa s at shear rates  = 0.01 s–1) based on silica particles in a silicone photopolymer. Numerical simulations of the acousto–mechanical coupling in the DLP resin feed system at different agitation frequencies predict local resin flow velocities exceeding 100 mm s–1at acoustic transduction frequencies of 110 s–1. Under these conditions, highly loaded particle suspensions (weight fractions, ϕ = 0.23) can be printed successfully in complex geometries. Such mechanically reinforced composites possess a tensile toughness 2000% greater than the neat photopolymer. Beyond an increase in processible viscosities, acoustophoretic liquefaction DLP (AL‐DLP) creates a transient reduction in apparent viscosity that promotes resin recirculation and decreases viscous adhesion. As a result, acoustophoretic liquefaction Digital Light Processing (AL‐DLP) improves the printed feature resolution by more than 25%, increases printable object sizes by over 50 times, and can build parts >3 × faster when compared to conventional methodologies.

     
    more » « less